R e B P B R A

N R

T e A TR FAY Vs § e Loy R AP 1] DN 2 AL € SIS I (st o8

Arose-re- 12- C157)

COOPERATION / CONFLICT
RESEARCH GROUP

AD 74VU55%

Approved for public release;
distribution unlimited.

72-2

A Dwision of Computer Institutc )

for Social Science Research N

Michigan State University

Reproduced b

NATIONAL TECHNICAL
INFORMATION SERVICE

springhield, Va 22151

nr




e ]

UNCLASSIFIED

po—

Secunty Classification

1.

DOCUMENT CONTROL DATA - R& D

Security clagsification of title, body of absiract and indexing &nnofet1on muast bs entered wton the oversll repoct 13 clasaihed)

ORIGINATING ACTIVITY (Torporsie sutho.) 2a8. REFCRY SECURITY CLASSIFICATION

_MICHIGAN STATE UNIVERSITY UNCLASSIFIED

Computer Inctitute for Social Science Research . 2. GROUP
East Lansing, Michigan 48823

REPORY TITLE

A MODEL FOR UELATIVE CONFLICT

DESCRIPTIVE NOTES (Type of report and inclusive dates)
Scientific Interim

AUTHORI(S) (Firet name, ouddie initial, last name)

¢ James L, Phillips,'Steven G. Cole, and Edwin A. Eartman

z REPORT DATE a. YOTAL HO. OF PAGES - NO. OF REFS
January 1972 60 7
82. CONTRACT OR GRANY NO. F44620-69-C-0114 %s. ORIGINATOR'S REPORY NUMBERIS!
' 72-2
b. PROJECT NO. 7921
#b. OTHER REPORYT HOI(S) (An her nusibers that may be sssigned
. 61102F this ropore y ol mer ¢
4 681313 AFOSR-TR-72-0157
10. DISTRIBUTION SYTATEMENT
Approved for public release; distribution unlimited.
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Alr Force Office of Scientific Research
TECH,0THER 1400 Wilson Boulevard (¥L)
Arlington, Virginja 22209
13. ABSTRACY

A mathematical model for triadic conflict was developed. The model was
based on the offensive and defensive capabilities possessed by each of the
three participants. Included in these capabilities were probability of a
suczessful attack, damage done by a successful attack, probability of intercepting
an attack, and ability to withstand an attack. The model was then tested on data
collected in three experimental situations employing the triadic conflict game,
the truel,

DD "2.1473 . UNCLASSIFIED

6 " Security Clessificstion




- m»-?.\,.vﬁgm‘

UNCLASSIFIED

Secunity Classification *

KEY wWOPDS

LINK A

LINK B

LiNK T

ROLE

wT

RCLE

ROLE

resources
truel
offensive

. defensive

threat

reciprocation
probability of attack
triads

model

launch probability
intercept probability
damage

70

JNCLASSIFIED

Security Classification




et L

A MODEL FOR GELATIVE CCWFLICT

by

James L. Phillips, Steven G. Cole, and E. Alan Ha~ man

Report 72-2

; . Cooperation/Conflict Research Group
. Michigan State University

i This rescarch was supported by a grant from the Air Force Office
of Scientific Research (F44620-69-C-0114),

Aprroved for pubsst sw - wey ’
distribution unlimited.




Conflict, whether it be between persons, small groups, organizations,
or nation-states, can be understood to exist on a var:ety of levels.
Perhaps the most extreme or intense level of conflict exists when the
parties to the conflict see their own goals as absolutely incompatible
with the goals of their opponents. Such a level of conflict can be
described in terms of an indivisible payoff structure (Phillips and
witz, 1968; Nitz and Phillips, 1962), - An ircivisible payoff structure
differs from a zero-sum or even a constant-sum situation. It implies a
situation in which at most one party can achleve its objective and in

which all partiss mav fail to do so. The spectre of two nuclear powers

involved in an altercation in which u,.> seeks to establish a world-wide
‘'workers' revolution'' while the other sets about to 'make the world safe
for Democracy'' is an example of this intense leve, of co~flict of colossal,
and terrifying, proportions. A more mundane example would be t'= two
19th century nobelmen who set out on a chilly morning each to "satisfy
his honor'' with a dueling pistol. It is, in fact, the duel that provides
the prototype of conflict with indivisible payoffs.

in turning our attention to the study of such a situation, as a
distinct form of conflict, we do not mean to suggest that there is anything
inevitable about it. \le do suqgest, however, that in a period of escalating
conflict there always exists the pnssibility that goals will be redefined
in such a3 way as to produce this indivisibility. Ue further suggest that,
faced with an.apparently indivisible payoff structure, it is usually

possible to find alternatives that mediate the conflict. The analysis of




this latter process, however, is a problem of negotiation and bargaining
whi~h we propose to defer in this paper. Thus, the scope of the presenc
undertaking will be restricted to an analysis of the dynamics of conflict
under an indivisible payoff structure.

Given this restriction the analysis of the two-person situation--the
duel-~is rather trivial. The two participants simply exchange attacks
until either (1) ofe wins and the other loses, (2) both are unable to
continue (i.e., both lose), or (3) the conditions of conflict are
mediated and the situation changes. Less trivial is che analysis of the

n-person situation (n >2), or n-uel.

The present paper focuscs upon what we have called uelative conflict.

This term refers to the type of conflict present in an n-uel. We will
first discuss the laboratory simulation of uelative confiict, and then
develop a mathematical model for strategy selection under uelative
conditions, This model is based on factors inherent in the structure
of power relations and on psychological assumptions about the dynamics
of interaction under these conditions., The model will then be restricted
to several special cases and these compared with empirical data.
Laboratory Simulation of Uelative Conflict

Although it is doubtful if pure uelative conflict has ever existed
between nation states, it can be argued that certain states of affairs
(e.g., war) bear a strong resemblance to it. !loreover, potential
uelative conflict may very well exist at all times. The problem of
how a potential uelative situation moves to a purely uelative conflict
is one that we hope to deal with in subsequent work. At present, however,

we restrict ourselves to the pure case. Since ''real-world" examples of
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pure uelative conflict are infrequent and do not readily lend themselves
to analysis, we have turned to the psychological laboratory where such
conflicts can be created or simulated.
There has been a modest effort in recent years to develop laboratory
simulations of uelative conflict. The studies by Cole (1963), Cole
and Phillips (1957) and Yillis and tong (1507) provide a paradigm for
the study of the three person form of uelative conflict--a truel. This paradigm
employs three persons as subjects or participants .n a simple game which
can easily be generalized te an n-person game. {n this name, each
participant is assigned a number of markers or points, as well as a certain
capability for destroying t!. markers of his opponents. Each plavz:r has
some defensive capability. These various capabi'lities are designated the
resources of each player. The opject of the game is for each player to
retain some of his markers after his opponents markers have becen completely
destroyed If there are n players in the game, there are n + 1 possible
cutcomes:. n ocutcomes in which scme single player wins and one outcome
in which all players lose.
The resoi'rces of the players can be broken down into four independent
resource dimensions. For purposes of the subsequent development of
the model, we now present formal definitions of these dimensions.
Definition 1. For any player, X, let D(X) represent the damage
player X can inflict on any given player given a successful
attack. In terms of the n-uel paradigm, X(X) is the number
of markers that player X can destroy in a single turn. It
is assumed that N (%) >0, for all) X,
Definition 2. For any player, X, let L(X) be the probability

that player X will be successful in launching an attack




when he chooses tc do so. It is assumed that L{K}> 9 for

at¥ X.
The resources 9{X} and L{X) taken together comnstitute the offersive
capability of piayer X. The two cimensions of resources that constitute

the defensive capability of player X can be snalcgously defined.

Definition 3. For any player, X, tet R{X) be the amount of

thoze resources controiled by player ' that determine the
number of successful attacks he cin survive, BR(X} dessqnates
the numbe: of markers that pYayer X has at any given time.

It is assumed that R{X) >0 for zlr X,

I (R AR NGO (M R R

Definition 4. For any player, X, let 1{X) be the probability
that player X intercepts an atrack that ic directed at
him and thus renders the attack unsuccesstul. it is
assumed that 1(X) <1.

In the laboratory simulation as employed by fole (1358} and by

Cole and Phillips (1967), subjects playes the oame for s number of turds
or trials until at least two of the thre2 were eliminated. dnce a

player was elliminated he could no longer attack, i.e., iv R{X) = U, X was
not a participant in the came.

The following sc:tion presents = mocel for uelative conflict amona
three players. Tiis model is intended to account for the intersc:iion in
the laboratory's simulation. To the extent that this simylation reflects
processes which are operative iyn other situstions, such as internitional
interaction, the model may be useful as a guide to reseacch and the

formation of policy.




The Model
Although, in the externded form of the truel, it may be necessary

to conduct several triais to determine the outcome, the model which is

proposed treats each trial as a game in normal form, that is, each
trial is treatzd és if it were a game in itself. lthere it is relevant,
however, the number of moves that a participant will last if he is
attacked by one of the other participants is used by the model (see
definition number 6).

Definitions

1T RTINSV R AT I

The first four definitions have already been given. Definitions
5, 6, and 7 are given below.
Definition 5. Let S(X,Y) be the probability that player X
successfully completes an attack on player Y. This is
determined by multiplyiag the probability that player X

successfully launches the attack by the probability that

player Y does not intercept the attack. §(X,¥) = [L(X)] [V-1(Y)].

Definition 6. Let n(X,Y) be the expected number of attacks it

e ah S SLAN o

takes for player X to eliminate player Y. To determine

S S

n(X,Y) it is necessary to compute the ratio of resources
controllied by player Y to the amount of damage which player

X can infiict times the probability that player X will be

successful in inflicting that damage on player Y.

niX,Y) = __ﬁ(V) i
o(x} S{X,Y)

Definition 7. Let P(X,Y) = the probability that player X will

attack player Y.
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Assumptions

(1) One of the factors which influences each participant's attack
choice is his vulnerability to each of the other participants. This
factor will be referred to as V(X,Y) and is inversely proportional to
n(Y,X). Thus, as the number of moves required fo player Y to eliminate
player X increases, the vulnerability of player X to player Y decreases.

vix,v) = Kj , where K  is a constant.

n(Y,X%) !

(2) A second factor which influences the participants attack choices
is the attack potential of the participants which is referred to as
A(X,Y). The attack potential of player X to player Y is directly
proportional to the damage player X can inflict on player Y times the
probability that player X will be successful in inflicting that damage.
A(X,Y) = KD(X)S(X,Y).

(3) In order to predict the probability that any of the participants
will attack one of the other participants it Is necessary to compute the
relative threats of the participants involved. The simple threat of
player X to player Y [T, (X,Y)] is directly proportional to the attack
potential of player X to player Y and the ‘.lnerability of player Y to
player X. It is inversely prorortional to the vulrerability of player
X to player Y.

T Y =1 5% ) vivaoa,y

° VIX,¥)

T, =0_ %3 10 51k pmsix,y)
Ky/nly, X} PIXY)

T, (,Y) = [ n(v,0000s(x,v) ] [%1%2%3 j
D(X,Y) K'




Letting K = K2K3 we have,

o

)
o, (X.9) = Kl o(§ S(V.X) } oix)six,)
R(Y)
BIOSK.Y)

= K R(X)0(X)2s{x,Y)?
ROVIDIVIS(Y,X)

Lo
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Similarly,

Fryran)

T () =k R(¥)D (V) Zs(y,x)2
R{X)o{(X)S{X,Y)

el §

T (2,%) = K _R@)0(2) 25(z2,x)2

R(X)6(X)STX,2)

T, (%,2) = K _R(D{X)25(x,2)?
R{)0(2)s(z,X)

T, (v,2) = k _R(oM2(y,2)?
R(ZTD(Z)S(Z Y)

T 2,Y) = Kk _R(2)D(2)2s(z,v)2
o R{YYO(Y)S(Y,Z

w5y haR e

(L) The simple probability that player X will attack player Y is
equal to the ratio of the threat of player Y to player X [To (Y,X)] to the

total threat to player X [T, (¥,X) + T, (7,X)].

‘ p(xy).T(VX)
: To (¥,X) + 7, (Z,X)

Similarly,

Py (x,¥) = __To £¥,X)
T,V + 1,00

Py (V,X) = To (X,2)
T2 7 517,20

Py (X,2) = 1-P_ (X,Y)
Py (Y,X) = 1-Py (¥,2)

Po (z2,Y) = i-PQ (2,x)
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To clarify the mode! given above we will discuss an example given
by Shubik (1954). Shubik considered a truel in which each of the three
participants (A, B, and C) fired ore shot at one of the other two
participants. The strength of each participant was determined by his
probability of hitting his target. The respective strengths were:
A=0.8; B=0.7; and C = 0.6, Shubik considered the case in which
successive firing order was randomly determined. There were six equally
probable firing orders. Assuming that the stronger of the two attack
alternatives (that is, the participant who posed the greatest threat
to a person’s survival) would be attacked with probability one by each
of the participants, Shubik determined that, averaged cver the six firing
orders, A's chances of survival were 0.260, B's chances of survival
were 0.488, and C's chances of survival were 0.820. Thus, the poorest
shot had the best chance to survive. This phenomena was raferred to
as ''strength through weakness'' by Shubik. le will apply our model to
the Shubik exampie with one modification; the firing order will not
be considered due to our assumption of simultaneous attacks rather
than the successive attacks assumed by Shubik.

The first step in applying our model to Shubik's examnle is to
determine the offensive and defensive capabilities for each of the
participants. Shubik's ‘‘probability of hitting the target'' is equivalent
to the launch probability in the present model, so the following values

are appropriate.

Person A Person D Person C
D(A) = 1 D(B) = 1 pD(c) = 1
L{a) = .3 L(B) = .7 L(c) = .6
R(A) =1 R(B) =1 R{B) =1
I(A) = 0 1(B) =0 1(B) = 0
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From the above definitions we computed the following probabilities
of each participant successfully completing an attack on each of the

cther participants.

S(A, 8) =S(A, C) = .8
s(B, A) =5(8, C) = .7
s(c, A) = s(c, B) = .6

Using the formulas which were given in Assumption 3, the following
simple threats were computed.

T, (A, 8) =, R(A) 2(8)” §(n,5)
R(B) D(B) s(B,R)

1) m?% (8?2
ONON®)

= .64
7 K

- 915 K
T, (A, C) = 1.068 K
To (B, A) = .13 K
T (8, €)= .817 K
0
T (C, A) = .450 K

T, (c, 8) = 514 X
The simple probabilities of attack as computed from the formulas in

Assumption 4 are:

P (A, B) To(8,0)
!( ° TO(B!K) + TO(C:A_)

= 613K
LE13K + . h50K

= .577
P,(A, C) = 423

Po(B,A) = .6M
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PO(B. €) = .359
P,(C, A) = .567
Po(c, 8) = 433
The probability of survival obviously depends upon the attack

probabilities. If we denote the probability of a successful attack on X

by Y as
P (Y,X)
then
P, survives) = 1 = [P'(Y,X) + P'(Z,X) - P (Y,x)P'(Z,X)]
Thus:

1= [(.449) + (.340) - (.148)] = .359
1 - [(.462) + (2.60) = (.120)]) = .398

P(A surviving)

P(B surviving)

P(C surviving) = 7 - [(.338) + (.251) - (.035)] = .496

The model concurs with the prediction of ''strength through weakness''
as proposed by Shubik (1954), however, the ''strength through weakness'
effect as predicted by the model is much weaker than was predicted by
Shubik. The difference between Shubik's predictions and the model's
predictions follows from the differential probabilities of attacking the
person who poses the greatest threat to one's survival as well as from
the assumption of simultaneous rather than suncessive attacks. Shubik
assumes that each person will attack the person who poses the greatest
threat to his survival wiith probability one. Our model, on the other
hand, assumes that each person will consider the contribution to the
total threat against him which is associated with each of the other
participants, and that the probability of attacking a given participant
varies directly with the propcrtion of the total threat contributed by

that participant.
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As they are stated, both Shubik's interpretstion and the model's
interpretation of strategy selection i-. the truel assume a rational
approach. The difference between the two interpretations is merely that
each assumes a different decision rule. Both are subject to the criticim
that the decision rule that they propose oversimplifies the situation
considerably. Realizing the appropriateness of this criticism and that
in fact such simple decision rules overlook the psychological processes
present within the situation, we extended the model to include the
cognitive processes empluyzd in strategy selection.

The extension of the model incorporates the probability of being
attacked into the determination of the threat. Thus, the simple threat
as proposed previously is modified by the subjective probability of being
attacked. This modification is given in definition 3 and assumption 5
below.

Definition 8. For every pair of players, X and Y, let ¢N,o(x,V) be

Y's subjective probability of being attacked by X.

Assumption 5. The (once) revised threat of player X to player Y

is equal to the product of the simple threat of player X to
player Y and player Y's subjective probability of being

attacked by player X. Simbolically:

T, (Y) = T (X,Y) ‘py,o(x,v)
The introduction of subjective probabilities raises the question of
how those subjective probabilitizs are determined. This question cai
be partitioned into two questions: (1) how does a player determine
subjective probabilities for his own prospective action and (2) how does

a player determine subjective probabilities for the prospective action
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of others? Our answers to these questions are given in assumptions 6

and 7 below.

Assumption 6. Any player, X, knows, without error, his own attack
probabilities.
Thus:

d’x,o(x,v) = P_(X,Y).

Assumption 7. Any player expects that for any two players, X and Y,
the probability that Y attacks X will be directly proportionate
to the probability that X attacks Y. In other words, each

player assumes reciprocity with respect to attacks between any

two players. From the standpoint of player X. this means

d)x,o(Y,X) =<P~x,o(X,Y) ax(Y,X\,
Pr0(2,%) - Prrolx,2) o (2.,

Protv,2) = Px,0(2.1) o, (v,2),

where qx(Y,X), ax(Z,X) and ax(Y,Z) are the coefficients of
proportionality.

It can be shown that so long as the objective attack probabilities are
all less than one and greater than zero, the coefficients of proportionality
can be chosen so as to make the subjective probabilities equal to the
objective attack probabilities. It is of interest, however, to make a

somewtat different assumption about these coefficients.

Assumption 8. For any player, X, the subjective probability of
being attacked by any other player, Y, is equal to the
probability with which X will attack Y. Clearly, the implica-
tions for the coefficients of proportionality are

a, (¥,X) = a,(Z,X) =1
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Assumption 8 has consequences for the coefficient of propcrtionality
ay(Y,Z). Before discussing these consequences, it is necessary to make
clear the meaning of a coefficient of proportionality. If, for example,

ax(¥,Z) = 1, then player X expects Y and Z to play a tit-for-tat strategy

against each other, that is, Y and Z may be said to behave according to

some rule or norm of perfect reciprocation. If @ (¥,Z)< 1, then player X

assumes that player Y will under-reciprocate attacks from Z, that is, Y

will attack Z less freguently than Z attacks Y. On the other hand, if

a
x(Y,Z) >4, then player X assumes over-reciprocation by Y against Z.

Thus, assumption 8 simply reflects the hypothesis that any player expects
perfect reciprocation between himself and any other player. Theorem !}
details the determinants of 9,(Y,2).
Theorem 1. The coefficient of proportionality, ax(V.Z), is equal
to the ratio of the probability that player Y attacks player Z
to the probability that player X attacks player Y. That is

@ (v,2) = PolX,Z)
B (X,V)

Proof: From zssumption 7 we have
(1) ¥x,00Y,2) = 0 5(Z,Y) a,(¥,2) which implies

(2) ax(v.2) = Px,0f"+?)
'x,o Z,Y

Since ¢, o(V,2) = 1 =P, (V,%) and B, o(2,Y) = 1 - B, (2,X) we

have:

(3) o, (v,2) = 1 Py o(¥,X)
*x '175‘x"0(z,x5

From assumption 7, this becomes

() a (¥,2) = '-"’x,o(x,v) a, (Y,X)
" 149k, 0(X,2) ax(z,X)
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which, in virtue of assumption 8 simplifies to

T LA
5 qx Y,Z = xX,0 .
-4 X,2
Yo

Assumption 6 allows us to replace subjective probabilities with

objective probabilities as follows:

(6) aglv,2) = PV R D)
1-P (x,2) PO(X’Y)
[¢]

and the theorem is proved.

Assumptions 5 - 8 allow us to caluclate revised threat values. Since
those values differ to some extent from the simple threat values, and since
the attack probabilities were determined by the simple threat values, it
is necessary to derive revised attack probabilities. These revised
probabilities, although dependent upon the revised threat values, can be
expressed in terms of simple threats, as in theorem 2,

Theorem 2. The {once) revised probability of player X attacking

pilayer Y, denoted P'(X,Y) is given by the following equation:

» vy 2
? X)) = T, (V. X) _
T LX)+ T (Z,X) ¢

Proof: By extension of assumption 4

(‘) P!l/ {) - T \Y %)
T](Y XJ + T\ (Z,X7.

From assumption 5 we can re-write expression (1) as follows:
T g (v,x0)

(2) rix,¥v) = —
To(v,x)%m(v,x; + T5(2,X) oy o(Z,X)

which, in virtue of assumpiuions 6, 7, and 8 yields

3) P x,v) = Tol¥,X) PoX,Y)
TO(V,X) PO(X,Y) + T, (7, X} Po(X,2)
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Assumption 4 gives the simple attack probabilities in terms of
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simple threats. lhen those are substituted here we have:
To(¥,X)2

Y, T,(2.X
) P,(X,Y) . To( X) + o( )

2 ' ;
To(V.X) + To(Z,X)
Toiv,x) + To(Z.X) TolY,X) + To(Z,X)
which reduces to:
T(v,x)2
(5) Py(x,y) = _ o

. 2
To(v,x)2 + To(Z,X)
and the theorem is proved.

The model can be further extended along the same lines. The rationale

for this extension is the ascription to the participants in uelative conflict
of an active reflective process. This process results in a modification
of the subjective probabilities which, in turn, modify the threats and
thus the attack probabilities. In order to achieve this extension, we
restate assumptions 4, 5, 6, and 7 below.
Assumption h*. The probability that player X will attack player Y
is :jual to the ratio of the threat of player Y to player X
to the total threat to player X. Symbolically:
| P, (X,Y) = Tn(Y’X)

T (Y,X) + T (Z,X)
n

*
Assumption 5 . The nth revised threat of player X to player Y is
equal to the product of the (n-1)th revised threat of player X

to player Y and player Y's (n-1)th revision of hls subjective
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probability of being attacked by plaver X. Symbolically:

TG =T 069 ¢ oy (x,Y).

03 a4 PPN T P ATINTS

Assumption 6*. Any player, X, knows his own attack prcbabilities.

This ¢ (V) =P (X,¥)

: Assumption 7*. Each player assumes reciprocity with respect to attacks

between any two players. From the standpoint of player X, this

means

¢ (X =¢ (V) (Vx),
X,n xX,n X

¢ @x=¢ 2@,
X,n X,N X

q) (Y,Z) ﬂ(}) (Z.Y)u (Y,Z).

X,0n X,Nn X
Since it will be useful to have access to subjective-objective
probability conversion expressions, we provide them below without proof.

temma 1. Conversion expressions for subjective probabilities are

¢ (XN =P (XY

X,N n

b X =P XY

x,n n

¢ (x,2) =p (x,2)

‘ X,n n

: poZx) =P (x,2).
x,n n

te now state a theorem which allows the nth revised attack
probabilities to be caiculated from the simple threats.
. Theorem 3. The nth revised probability of player X attacking player Y is

T (v,x)2n
Pn(xvv) - (o]

n n
1,002+ T (2,07
<
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Proof (by induction): It has been shown in theorem 2 that the

general formula holds for one reflective cycle. Assume it is true for

S (o A MR SR N T AN

n-1 reflective cycles, that is: 2n-l
T (Y,X) T (v,X)
(1) P (x,Y) = n-1 - o
n-1 2n-I 2n-l
T (XT(Z,%) To(Y,X)2 4T (2,X)

T enipataY au

From assumption 5 we have

(2) ¥ (v,x) =T (v.%) <by’n,|(v,x) and

- rg oI

TZX) =T 20 @

Expression (2) can be rewritten as

(2,0

(3) T0LK =T (0 P (,Y)

Tn(Z,X) = Tn_'(Z,X) Pn_‘(X,Z) using Lemma 1.

Combining expressions (1) and (3) into the form of assumpzion & yields

(%) - n-} N
on=1 T (v,x)2 )
7 T (Y,X) o "
° el e )
\ T (VX2 +7_(Z,X)
P, (X,Y) = ° —
s -1 n-1
n-1/ 2" n-1 / 2
T T (V.0 I, To(2,X)
n-1 n-17 ° -1 2n-l
2 2 &
Qo(v,x) MR L (\TO(Y,X) TolZX)®
Expression (4) can be simplified to
(5)
2n-l 2n-l
L (v (v,x) ] Iv,(v,X) ]
P (X,Y) = ° °

- -1 n-1 -1

n-1 n
(1,002 1 [7,(¥,%2 I Toz,0? ]

]+ [7,(2,0°

A or,.alternatively




n-1 2 13
(T (v, )2 ]
(6) P, (x,v) =

n-1 2 n-l
[T, x32 17+ [To(z.02 )2

which .s just

n
T (v,x)?
) P (x,y) = °

" "
TO(Y,X) + TO(Z,X)
and the theorem is proved.
We shall be interested in obtaining asymptotic values of Pn(x,Y) as
the active reflective process continues indefiniteiy. To facilitate this
result, we state the following corollary:

Corollary 1. An alternative expression for P, (X,Y) is given by
]

Pn(X,Y) s _ .
T,(2.X) an
1+ ‘ TO(Y,X)

Theorem 4. As the active reflective process continues indefiniteiy, any
player, X, attacks that player whc constitutes the greatér simple threat
to him with probability | and that player who constltutes the lesser
simple threat to him with probability zero. |f both of X's opponents
are equal in simple threat, he attacks each with probability 1/2.

Proof: There are three cases.

Case |. Assume that player Z constitutes a
greater simple threat to player X than does
player Y, i.e.,

TolZ,X) > T (¥, X).
In this case, we know that

T (Z,x%)
(o]

-

T (.)
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Taking the limit of Pn(X,Y) as n grows indefinitely large we obtain

ilm p (X,Y) = 1 =0
n <o n {s ‘\zn
4 1im [To{ZX) |
n *® ”"—“-‘“‘
T,(1,%) |

Case I1. Assume that player Y constitutes a greater simple threat
to player X than does player Z. Under this assumption it must
be true that

T, (z,x)

< 1,

To (v, )

Taking the limit of Pn(x,Y) under this assumption yields

= 1.

lim P (X,Y) =
n

n > o

[
- - n
T,(2,X) ‘2
T |

|
1+ lim |
N >x

Case li}. Assume that TO(Z,X) = TO(Y.X). This implies that

T(2,%)

TO(Y,X)

If we take the limit of Pn(X,Y) we have

Yim P’(X,Y) = 1

n o

anc the theorem is proved.
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Experiment 1

The initial test of the model employed the truel as an experimental
paradigm because it is the simplest nontrivial n-uel. Three experimental
manipulations were conducted. the first manipulation held R(X), L(X),
and 1(X) constant and varied D(X) such that situations ranging from a
situation in which D{A) = D(B) = D(C)~-the all equal point--to a
situation in which one player had complete control of the outcome--the
dictator situation--were tested. The second manipulation held D(X),
L(X), and 1(X) constant and varied R(X) such that situations ranging
from the all equal pcint to the dictator situation were tested. The
third manipulation held D(X), R(X), and #(X) constant and varicd L(X)
such that situations ranging from the all equal point to a situation
in which one player had an obvious advantage with respect to the probability
of successfully completing an attack were examined. Due to the
probabilistic nature of the third manipulation it was not feasible to
manipulate the situation such that one player had complete control
over the outcome. The three manipulations and the procedures and
results associated with each one will be presented sepsrately as experi-
ments la, 1b, and lc.

Experiment la

Subjects. Forty-five male and forty-five female undergraduate
volunteers from an introductory psychology class at Michigan State
University were the subjects in this experiment. They received two
extra credit points in the course for their participation,

Apparatus. The apparatus consisted of 90 white poker chips and

three wooden tokens one marked A, one marked B, and one marked C,
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Special attack choice slips were provided and clipboards were provided
to allow attack choices to remain secret until all three players had
made their attack. A cylindrical urn that measured 2 3/8 inches in
diameter and 4 inches tall and that had an internal baffle was used for
the random selection of player position for each game.

Procedure. Fifteen all male and fifteen all female triads

participated in the experiment. Each triad played five games in which
D(X) for each of the three participants (Player A, Player B, and Player C)

was assigned as indicated in Table 1. All of the games were played in a

insert Table 1 about here

fare-to-face situation and the order in which the games were played was
randomly determined for each triad. The position that each subject played
was determined randomly for each game. Before each game, each subject
drew a token (marked either A, B, or C) frem an urn and played the game

in the position indicated on that token.

The structure of the hasic gamre was as follows. Each of the players
began each game with 30 poker chips [R(A) = R(B) = R(C) = 30]. The
probability of intercepting an attack [1(X)] was 0.0 and the probability
of launching an attack [L(X)] was 1.0 for all of t'e players in all of
the games. The rules of the game required that each player remove
a given number of chips (see Table 1) from one of the other two players
on each move. To remove chips each player circled the letter of the
plaver he wished to attack on an attack choice slip and passed it te
the experimenter. After the experimenter had received attack choice

siips from all three players on each move, the players were told who had




TABLE 1

D(A), D(B), and D(C) for the Five Game Types in Experiment la

P L s s Ll Ul a4 A e i

: Game Type
| f
| i 2 3 4 5 5
f_“ i
D(N) 6 7 8 9 11 {
i D(3) 6 6 6 ) 6
D(c) 6 5 4 3 1 j
i

*Note.--The five distributions of D(X) werc sclected to regulate
game length and to test the model in situations ranging from

the all equal situation-~-the 6/6/6 game--to a situation in which
onc player had dictatorial powers--the 11/6/1 game.

S AT SR T,

e e
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attacked whom and the number of chips .. m@ining was appropriately
adjusted. Thus, the moves in the game were simultaneous. The chips
that were taken away, were taken out of the game and did not belong
to any of the players. The winrer of each game was that player who
had points remaining when the other players' points were gone, that is
he was the sole survivor. If there was no sole survivor, there was no
winner.

Each of the subjects was required to fill out a pre-game questionnaire

before each of the five games. The form of the questionnaire follows:

Gane Expr~riment
Pre-game Qu  cnnaire

Lo

Before you draw to determine which of you will play in which position,
| would like you to 2nswer the following question.

1. UYhich player would you choose to be if you had your choice?

A B C No preference
(circle one)

3 in addition, each of the players filled out a ~ost-game questionnaire
following the five games. Th: follawing nir: gquestions were asked on
that questionnaire.

1 1. Did you know anything about the experiment before you came in
y the room? If so, what?

2. How would you rate tne length of the game?

1 2 3 b 5
too short too tong

3. How interesting was the game?

1 2 3 b 5
b very dull very interesting

L, \las the game fair? {f not, please state your reasons.
5. How easy wac it to understand the rules of the game?

1 2 3 4 5
VEry easy very difficult
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6. How hard did you try to win?

1 2 3 Y 5
not at all very hard

7 Did you know either of the other two plavers before today?
If you did, how well did you know him?

1 2 3 4 5
not at all very hard

3. Which player would you rather be?

A B C No Preference
(circle one)

9. What did you think | was trying to study with this experiment?

After the subjects had completed the post-game questionnaire, they were
thoroughly debriafed.

Results. ~s a preliminary test of the model, we will concentrate on the
initial attack. Thus, until it is stated otherwise, all data discussed will be
attacks on the first move ¢ ° the game. Figure | indicates the predicted probab-

ilities of each player attacking the stronger of his two opponents as a function

Insert Figure | about here

> s— —

of D(X) for n reflective cycles. It is obvious from Figure | that the predicted

probabilities of attack asymptote at 1.0 after a small number of reflective cycles.
Figure 2 reports the observed probability of attack as compared to the predicted

probability of attack as a function of D(X) on the initial trial of all game

types.

Insert Figure 2 about herc




ooy

Figure 1,
Predicted probabilities of cach ployer attacking the stronger

of his two opponents as 1 function of D(X) for 'n' reflective cycles.
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Fiqure 2.
Observed and predicted probabilities of cach player attacking

the stronger of his two opponents as a function of D(X) and 'n' reflective cyclecs.
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The predicted probabilities of attack were obtained using thc average number
of reflective cycles associated with Plavers A, B, and C for game types two
through five. The n's were computed by*using Theorem 3 and substituting the
observed probability of attack for the predicted probability of attack. Since
the appropriate simple threats could be computed, the matter of solving for n,
the only parameter, was easily performed. Such a procedure may seem inappropriate,
because we are forced to assum that a player can use a fraction of a reflective
cycle. However, it is reasonable for some subset of the players to utilize

j reflective cycles while some other subset of players considers i reflective
cycles. The result is some number of reflective cycles n which is composed of
the weighted average of j and i.

Examination of figure 2 indicates that the mode! does not accurately
predict attack choices on tke initial meve of a truel in which D(X) is manipulated.
However, there are indications that the assumptions underlying the model may in
fact be acceptable. Further discussion.of the®Inadequacies .of the model will be
discussed in conjunction with the results of the experiments Ib and lc. Ve
will now turn to the data obtained from all of the moves in ezch game type.

Figure 3 reports the observed and predicted probabilities of each player
attacking the stronger of his two opponents as a function of D(X) and n reflec-
tive cycles for each move of game types 6/6/6, 7/6/5, 8/6/4, 9/6/3, and 11/6/1
respectively. The number of relfective cycles associated with each player in
each game type was computed by determining the exact number of reflective cycles
which predicted cach move for each player in each game type and determining the
mean number of reflective cycles for each player across all moves for each game
type. Any move with less than twenty subjects { i.e., N < 20) was excluded.

The product-moment correlations between the predicted and observed values arc

presented in Table 2.

28
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Insert Figure 3 and Table 2 about here

Experiment 1b
Subjects. Ninety male and ninety female undergraduate students from
an introductory psychology class at Michigan State University were the subjects
in this experiment. They received extra credit in the course for their

participation.

Apparatus. The apparatus for this cxperiment was identical to the
apparatus used in experiment la.

Procedure. Thirty all male and thirty all female triads werc formed.
Each triad played four games in which R(X)} for cach of the three participants
(Player A, Player B, and Player () was assigned as indfcated in Table 3.

Fifteen male triads and fifteen female trlads played game types V, 3, 5, and 7;

insert Table 3 about here

—

fifteen male triads played game types 1, 2, 4, and 6; fifteen female triads

played game types 2, 4, 6, and 8 in those orders. As was the case in experiment

la, all of the games were played in a face-to-face situation. The position

that cach subject played in cach game was randomly determined by the samc mcthod

used in experiment la,

The structure of the basic game was as follows. Each of thc players began

each game with R(X) determined by the gamc type that they were playing (scc

Table 3). The probability of launching an attack [L(X)] was 1.0 for al! of the

players in all of the games. Except for the fact that cach player removed only

one chip on each move [D(A) = D(B) = D(C) = 1]. the rules of the game were

24
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Figure 3.
Observed and predicted probabilities of each player attacking
the stronger of his two opponents as a function of move number and ‘n' reflective
cycles with the 6/6/6 [D(X)] game type appearing in “a'*, 7/6/5 in "b", 8/6/4

in "¢, 9/6/3 in "'d", and 11/6/1 in "c'".
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TABLE 2
Prodict-Moment Correlations between Predicted and Observed Probabilities
of Each Player Attacking the Stronger of his Two Opponents for Each Game

Type in Experiment 1b

P AP SRR Y PR RK ST PATURAT I AT AR

i
L1
? / Game Type
A i | a
; | !
: i Player ; ] 2 3 b 5
i R
A ! 72 .75 .98 .88 b2
B } .32 .82 .97 -.27 .70
C | 83 93 .65 -.24 -.70
} '

e
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TABLE 3

R(A), R(B), and R(C) for the Eight Game Types in Experiment 1b

Game Type

., BRI A A . . .
§ON T ST e RO AV QYA IP TR P TOMU RS S OISR T NH!‘NW“M“u"'m

R(A) 9 10 1 12 13 W 15 16
| R(B) 9 9 9 9 9 g 9 9
R(C) 9 8 7 € 5 4 3 2

*Note.-~The cight distributions of R(X) werc seleccted to
rcgulate game length and to test the model in situations
ranging from the all equal situation--thc 9/9/9 game--to
a situation in which onc player had dictatorial powers--
the 16/9/2 game.

A1
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identical to the rules governing the game in experiment la.
Results. As was the case in experiment la, in this experiment, we first
consldered only attack data from the initial move of the game. Figure 4 indicates
the predicted probabilities of each player attacking the stronger of his two

opponents as a function of R(X) for n reflective cycles.

insert Figure 4 about here

———

Figure 5 reports the observed probability of attack as compared to the

predicted probability of attack as a function of R{X). The number of reflective

—— - —

insert Figure 5 about here

— o—

; cycles was computed in the same manper that it was computed in experiment la.

K The n's that were computed for each player position in each of the game types
two through eight. were summed and divided by seven, The resulting mcan n

; for each player position was used to determine the predicted probabilities of
attack in all game types.

Figure 6 reports the observed and predicted probabilities of e3ch

player attacking thn stronger of his two ooponents as a function of R(X)

— -

Insert Flgure G abcut here

———

and n reflective cycles for each move of game types 9/9/9, 10/9/8, 11/9/7,

12/9/6, 13/9/5, 14/9/4, and 15/9/3 respectively. The number of reflective cycles
was computed as it was in experiment la. Any move with N < 20 was excluded.

Table 4 presents the product-moment correlations betwcen the observed and predicted

probabitities.
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Figurc 4.

Predicted probabilities of cach player attacking the stronger

ate

of his two opponents as a function of R(X) for 'n' reflective cycles.
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Figure 5.
Observed and predicted probabilities of ench player attacking

the stronger of his two opponents as o function of R(X) with 'n' reflective cycles.
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Figure 6.
Observed and predicted probabilitics of cach player attacking

' reflective

the stronger of his two opponents as A function of wove number and 'n
cycles with the 9/9/9 [R{X)] game type appecaring in "a', 10/9/8 in "b",

11/9/7 in "'¢", 12/9/6 in "d", 13/9/5 in "c"', 14/9/4 in "f", and 15/9/3 in "q''.
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Insert Table 4 about here

Experiment lc

Subjects. Forty-five male and forty-five female undergraduate volunteers
from an introductory psychology course at Michigan State University were the
subjects in this experiment. They received ecxtra credit in the course for
their participation.

Apparatus. The basic apparatus for this experiment was identical to
the apparatus used in experiments la and 1b. In addition, due to the probabilis-
tic nature of the present experiment, threc sampling urns were used. The
sampling urns were cylindrical and measured 1 1/b4 inch in diameter and 2 1/4
inches in height. Each urn containcd a total of 10 balls approximately 1/8
inch in diameter. Each urn had a clear plastic bubble on top which was con-
structed so that when the urn was turned upside down, one of the ten balls would
fall into the bubblec.

Procedure. Fiftecen all male and fifteen all female triads participoted
in the experiment. Each triad played five games in which L(X) for each of
the three participants (Player A, Player B, Ind Player C) was assigned as
indicated in Table 5. All of the gomes werce played in a face-to-face situation
and the order in which the games were played was randomly determincd for cach

trial. The position that cach subjcct played was determined by the same method

insert Table § about here

—

that was used in experiments la and lb.

Tne structure of the basic game was as fullows. Each of the players began

A~
J voned




Product-Homent Corrciations between Predicted and Observed Probabilitics

TABLE &4

of Each Player Attacking the Stronger of his Two Opponents for Each Game

iype in Experiment 1b

U SR

Game Tync
Player ! 2 3 4 5 6 7
A .56 .70 .06 .51 -.ob b6 -.68
B .34 .66 .16 .32 .07 4 .05
.57 .53 VA .78 -.07 .81 -.78
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TABLE 5

wage o

L{1), L(B), and L(C) for thc Five Game Types in Experiment lc

i Gamc Type
x“
E 1 2 3 4 5
, L
L(n) 6 .7 3 9 1.0
|
| L(B) I 6 6 ¢ 6 6
N () j 6 5 b 3 2

*Note.--The five distributinns of L(X) were selected to allow
a test of the model in a variety of sitieations in which the
predicted outcomes arc similar to the predicted outcomes in
experiments la and 1b.

;
| 423
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each game with 6 pokes chips [R(A) = R(B) = R(C) = 6]. The probability of
intercepting an attack [1(X)] was 0.0 and each player could remove 1 chip on
a successful attack [D(A) = D(B) = D(C) = 1]. L(X) was varied according to a
prearranged schedule (see Table 5). The rules of the gome werc icenticel to
the rules governing the gamc in experiment la with onc modific tion. After all
three players had made their attack choices, they were required to turn their
sampling urn cver so that a ball appeared in the plastic bubble. If a white
ball appeared, the attack was successful. |If 3 black ball appeared, the attack
was unsuccessful. The ratio of black and white balls in each players' sampling
urn was manipulated to follow the schedule of L(X) indicated in Table 5. In
addition, the probabilistic nature of the game req.uired that each game be played
until one or none of the players survived. This resulted from the fact that when
two players had chips remaining it was not possible to predict the winner.

Results. In this experiment, as was the case proviously, we examined the
attack data from the initial move. Figurc 7 indicates thc predicted probabilitics

of each player attacking the stronger of his two opponents as a function of i(X)

Inscrt Fiqure 7 about here

—— — -

for n reflective cycles.

Figure 8 reports the observed probability of attack as compared to the

predicted probabilities of attack as a function of L(X).

Insert Figure 8 about herc

The number of reflective cycles was computed as ic¢ was in cxperiments la and

Ib. The observed and predicted probabilitics of cach player attacking the stronger



Figure 7.
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Predicted probabilities of each player attacking the stronger

of his two opponents as a function of L(X) for 'n' reflective cycles.
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Fiqurc 8.
Observed and p-edicted probabilities of cach player attacking

the stronger of his two opponents as a function of L(X) with *n* reflective cycles.
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of his two opponents as a function of L(X) and n reflective cycles for each
move of game types .6/.6/.6, .7/.6/.5, .8/.6/.5, .9/.6/.3, and 1.0/.6/.2
respectively are presented in Figure 9. The number of reflective cycles was

computed as it was in experiments la and Ib. Any move for which ¥ < 20

Insert Figure 9 about here

was not included. Table 6 reports the product-moment correlations between

the predicted and observed probabilities.

tnsert Table 6 about herec

e R BREPQME A0y
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Discussion of Experiment |

The correspondence betwecn the theoretical curves and the observed data from
Experiment 1 lcaves a great deal to be desired. There are, however, a number of
factors which shnuld be noted in evaluating the fit of the model to the dath. The
model makes certain assumptions about the motives of the subjects, that is, that
each subject seeks to be the sole survivor and that, failing to survive, each

subject is indifferent to all possible outcomes. This assumption imnlies that
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Figure 9.

Observed and predicted probabilities of each player attacking

the stronger of his two opponents as a function of move number and ‘n' reflective

cycles with the .6/.6/.6 [L(X)] game type appearing in "a", .7/.6/.5 in "b",

.8/.6/.4 in "¢, .9/.6/.3 in "d", ana 1.0/.6/.2 in "c".
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TABLE 6

Product-Moment Corrclations between Predicted and Observed Probabilitics
of Each Ptayer Attacking the Stronger of his Two Opponents for Each Game

Type in Experiment Ic

U ,
Game Type ‘
Player 1 2 3 b 5
b— -
A 43 .26 b2 -.43 -.1h
B .0l .20 .07 -09 .60
c Jbo 2 .51 .28 .34
E
4
é
!
1
2l
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the subjects have an appropriate understanding of the game. Moreover, the
modei ignores certain variables such as retaliation and the attribution of
personal characteristics. These assumptions may be considercd more as boundry
conditions of the model than as substantive assumptions to be tested. Thus,
it is important to consider the degree to which these conditions were met in
Experiment | and how any failure to meet these conditions should effect the
evaluation of the model.

On the whole, subjects did appear highly motivated to win the games.
This is consistent both with the manner in which they played and with their
post-experiment comments, despite the fact that no monctary incentive was pro-
vided. However, a number of subjccts indicated a preference for being the
second player eliminawed, i.e., for achieving sccond place, dcspite the fact
that a pre-condition of uelative conflict is that losing is losing. There is,
moreover, some evidence to indicate that subjects did not fully understand the
game. For example, consider figure 2. In the 11/6/1 gamc, the strongest
player, (Player A) is assured of winning if he attacks the intermediate player
(Piaywr B) every time. As is apparent in figure 2, A attacked B less than 90%
of the time in this situation. Moreover, in 3 study conducted subsequent to the
present one, Hartman (1970) demonstrated a statistically significant change in
the probability of attacking the stronger player after the first few games.
Since subjects in Experiment 1 played only 2 few games, it may be that a sub-
stantial part of the data reflects relatively uninformed decisions. Further,
this experiment was conducted in a face-te-foce situation which would allow
subjects to realiaile against a given olayer in o given game for some action
taken by that player in o prior game. The model clearly does not take such a
contingency into considcravion.

Given the above remarks, the relatively poor fit of the model to the dato
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from Experiment | can bc more appropriately interpreted. Cons.der first the
initial trial data presented in figures 2, 5, and 8. In figure 2, two of the
three graphs show an excellent rank-order correlation betwcen observed and prc-
dicted data points. In figure 5, two 6f the three graphs show acceptable fit and
t. = sam~ is true in figure 8. Thus, given the possiblc sources of departure

from boundry conditions, the model appears to provide a reasonable and encoura-
ging fit tothe initial trial Jata.

To the extent tizt the experimental conditions in Experiment | may have
diverged from the boundry conditions of the model, this divergence might be
expected to effect the latter moves in a game more scriously than the initial
trial. This is the case becausc of the Increased likelihood of rctaliation
effects and because whatever temptation there may have been to play for ''second
place'' would have been more pronounced on later moves.

Reference to fiqure 3 indicates a surprisingly good correspondence betwecn
predicted and observed values over trials for the games in Experiment la. Of
the 15 product-moment corrclations between predicted and observed values in
Table 2, 10 are greater than or equal to .65, and 6 are greater than .80. Four

of the five lowest correlations occurred in the two games with the greatest

disparity of resources. In thesc games, subjects tended to under-attack their
str-r '~r attack chnice. This finling is consistent with the ; revious comments

-

about lack of understanding the gamc.
A similar pattern emerge in figurc 6, although the corrcspondence between
predicted and observed volues was considerably poorer in Experiment 1b, Of

the 21 product-moment correlations (Table 4), only five are larger than .65.

The five lowest correlations occurred in the three games with the greatest

disparity of resources; and particularly with respect to Player A--the strongest

member of the triad--therc was a marked tendency to unler-attack the stronger

.

Wl
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attack choice. As in Experiment la, this could be accounted for by an insufficient
understanding of valid winning strategies.

The fit of thc model to over-trials data was poorest in Experiment lc as
is indicated by figure 9 and Table 6. 111 of the 15 correlations were less than
.65. The post-experimental comments of the subjects in this experiment indicated
that they had failed to appreciate the naturc of the probabilistic resource
dimension (launch capability) that was varied in Experiment lc.

On the whole, the results reported above, while in no way constituting
adequate support for the model, seem to be influenced by a failure to meet the
boundry conditions of the. model in the experimental conditions. It is recognized
that methodological apologies do not provide a very satisfactory substitute
for a demonstrated correspondence betwecn theory and data. It was with this
in mind that Experiment 2 was designed.

Experiment 2

Subjects. The subjects werc four male and two female undergraduates who
were paid $1.50 per hour plus bonuses to participate in the cxperiment.

Apparatus. A talbe divider was used to control the non-face-to-face aspect
of the game. It was designed to divide a 2 1/3' X 5' table into four scctions
so that the subjects could not see cach other or the experimenter. One | X 4
inch slot in the bottom of each of the dividers between the subjects and the
experimenter was provided for written communication.

A 12" X 36' scoreboard was mounted on the wall behind the expuerimenter
in full view of the subjects. Each subject's scorc was kept by sltiding billiard
markers on 1/8 rods behind a 18 X 12 cover such that the markers that remained
visible indicated the subjects' scorc at any given point in the game. For cise
in calculating the score the markers were placed in a sequence of four white and

one black marker. There were a total of thirty markers for cach subject .

g |
e
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Procedurc. Four male and two female undergraduates were hired to partici-
pate in the experiment. Two triads each composed of one female and two malcs
were formed. Each triad was composed of the same playcers for the duration of
the experiment which consisted of five thr;e hour game playing scssions over a
three week period. The games were played in a non-face-to-face situation with
no communication allowed between subjects.

The truel paradigm described in expecriment | was used in the present
experiment. In every game R(X) was thirty points, 1(X) was 0,0, and L(X) was
1.0 for all three players. The six different distributions of D(X) reported

in Table 4 were examined. R(X) and the six distributions of D(X) were chosen

to reqgulate the length of the game and to allow an evaluation of the model in

Insert Table 7 about bore

situations ranging from an all equal situation -- the 6/6/6 game type -- to a
situation in which one player had dicratarial power -- the 1./6/1 game type.
Each subject was assigned a ‘name'' or label in each set. In addition, the labels
VAF, ZEJ, AND YOV wecre counterbclanced on the scorcboard such that each jabel
was associaoted with the top, middic, or hottom row of points zn cqual nuaber
of times. The subjects were 1ssigned o pssitions asround the game divider for
each set of thirty-six games. Each subject occupied each of the three positions
an cqual number of times.

On cach move of the game, ench player circled the 1abe} of the player
he wished to attack on an attack choice slip and passed it te the experimenter.
After the experimenter had reccived attack choices from 111 three playars
on ench move, the players were told who had attacked whom and R{X) was appro-

priately agjustea for cach player. Thus, tac moves in the game were simultancous.



TABLE 7

0(A), D(B), and D(C) and the Number of Games

g Played for the Six Game Types in Experiment 2
H
Game Type
] 2 3 ) 5
D{A) 6 7 8 9 10
0{B) 6 6 6 6 6
b(c) 6 5 4 3 2
fG
! Played 1o 8 8 83 48
1
f’
i{
: N
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The winner of each game was that player who had points remaining when the other
p;ayers' points were gone, that is, he was the sole survivor. {f there was no
sole survivor there was no winner.

One point was given to the winning player in each game. After two scssions
(approximately 80 games) thc number of points accumulated by cach player was
totaled and in onc triad the player with the most points was given 2 twelve
dollar bonus in addition to his hourly wage. The other two members of the triad
received only their hourly wage. In the other triad, the players divided 2
nine dollar bonus in direct proportion to the ratio of the number of points they
had accumulated to the total number of points accumulated.

Results. Since there were no differences as a function of the way the
bonuses were determined and there werc no individual or sex differences, the
data were collansed and examined as a function of D(X) and game type.

Figurc 10 presents this comparison for cach of the threc power positions
in Experiment 2. The three values of n were estimated by solving for n for each
power position in each game type and by averaging over game types to obtain a
value of n for each power position. In this procedure, the 6/6/6 dato was not
included because the predictcd probability of attack docs not change as 2 func-
tion of number of rcflective cycles, The 10/6/2 data was also omitted because

the number of reflective cycles associated with P(B,\) for this game was undefincd.

Inscert Figure 10 about hcre

Figure 11 prcsents 2 comparison of the prediction of the model and observed
over-trials data. Of the 18 product-moment correlations presented in Tablce 8,

12 werc higher than .65 and 10 were higher than .80,
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Figurc 10,

Observed and predicted probabilities of cach player attacking

the stronger of his two opponents as = function of 2(X) and

n' reflective cycles.
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insert Figure 11 about here

insert Table 8 about here

A 3 x 4 factorial analysis of variance with repcated mcasures on one factor
and with one observavion per cell was computed on the da.a in Table 9. Table
lO«reports%&hewsummary:of thatyana)y$is. There was a significant ~endency for
the number of reflective cycles to decrcase as the disparity of D(X) between
player positions increased (F = 42.50, p < .001). In addition, a significant

propensity for each player position (i, B, and C) to consider a ¢ifferential number

Insert Table 9 about here

Insert Table 10 about here

of reflective cycles (F - 34.83, p <.001) was indicated. An examination of
Figure 11 indicates that the differcence associated with playecr position results
from a tendency for Player C to consider more reflective cycles than both

Players A and 8. There is no difference between Players A and B.

Discussion of Experiment 2

The results of Experiment 2 provide at least a partial validation of the
methodological crticisms of Experiment 1. When care was taken (a) to provide
subjccts with sufficient experience to fully understand the game, (b), to nro-

vide the monetary incentive to establish the cquivalence of all losing outcomes,

n
\ v




Figure 11,
; Obscrved and predicted probabilities of cach playcr attacking
' the stronger of his two opponents as 2 function of move number and 'n' reflective
cycles with the €/6/6 [R(X)] game type appearing in A", 7/6/5 in "b'", 8/6/4

in "¢, 9/6/3 in "'d**, 10/6/2 in "¢, and 11/6/1 in "'f*.
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TABLE 8
Product-Homent Correlations between Predicted and Observed Probabiliiies
of Each Player Attacking the Stronger of his Two Opponents for Each Game

Type in Experiment 2

Game Type
Player i 2 3 4 5 6
A -.49 .99 .96 77 83 -.99
8 67 94 .89 88 .81 18
c 43 .98 42 88 1.00 -.80




TABLE 9

Number of Reflective Cycles Across Player Position and Game Type

5 “Player
i D (A) D(B) p(c) A B c
!
i
i 7 6 5 2.4 2.0 3.4
i 8 6 4 1.4 1.7 2.5
i 9 6 3 0.4 0.8 2.2
n 6 | 0.1 0.0 1.4
3
3
65




TABLE 10

i
Summary Table for the 3 x 4 Factorial Analysis of Variance

J—
Source SS df MS F
Game Type 7.64 3 2.55 42.50%
Player Position 4,18 2 2.09 34,83«
Error .34 6 .06
j
|
Total 12.16 1 '

INote.--Since the analysts of variance had only one observation

per cell the interaction term was used as the error term,

%p < .00}
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and (c) to eliminate cues of personal characteristics and information allowing
for inter-game retaliation, the correspondence betwcen theoretical and observed
values was greatly enhanced. Figure 10 shows an excellent fit between | redicted
and cbserved initial attack probabilities.

Despite the very encouraging results of Experiment 2, we would be mistaken
at this point to make anything but very modest claims for the validity or
heuristic valuc of the model. What has cmerged from the empirical work of
this paper is a conclusion that further tests of the model are warranted.

Uelative conflict as we have characterized it in this paper, stands in
thc shadows of virtually all other conflict. Whilc it emerges only infrequently
or in a limited form, its existence influences attempts at thc resolution of
conflict. Thus, a better understanding of the nature of uclative conflict
would scem to be essential to the management of conflict in less intensc
situations. This paper is intended to be a step in the direction of that

understanding.




BEduh &

e \.\w\m:w’l“ﬁ‘wm

ot e St B b

P g

37

References

Cole, S. G. The strength is weakness' effect in the trucl. Paper presented
annual meeting of the Midwestern P,ychological Association, Chicago,

May 4, 1968.

Cole, S. G. and Phillips, J. L. The propensity to attack others as a function

of the distribution of resources in a three person game. Psychonomic

Science, 1967. 9. 239-240.
Hartman, E. A. Development and test of a model of conflict in a truel.

Report 71-1, Cooperation/Conflict Research Group, Michigan State University,

East Lansing, Michigan, 1971.

Nitz, L. H. and Phillips, J. L. The cffects of divisibility of payoff on con-

federate behavior. Journal of Conflict Resolution, 1969, 13, 381-387.

Phillips, J. L. and Nitz, L. H. Social contacts in a thrce-person political

convention situation, Journal of Conflict Resolution, 1968, 12, 206-214.

Shubik, M. Does thc fittest nccessarily survive? In M. Shubik (Ed.},

Readings in Game Theory and Political Behavior, Doubleday, 1954, 43-36.

Willis, R. H., and Long, Norma Jean. An expzrimental simulation of an internation

truel. Behavioral Science, 1967, 12, 24-32.

bb



